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ABSTRACT :Accurate rainfall forecasting has been one of the 
most significant role in order to reduce the risk to life and to 
alleviate economic losses by natural disasters. Recently, support 
vector regression (SVR) provides an alternative approach for 
developing rainfall forecasting model due to the use of a risk 
function consisting of the empirical error and a regularized term 
which is resulting from the structural risk minimization. To put 
up an effectual SVR model, SVR’s parameters must be 
positioned carefully. This study proposes a novel approach, 
known as particle swarm optimization algorithm (SVR–PSO), 
which searches for SVRs optimal parameters, and then adopts 
the optimal parameters to build the SVR models.The monthly 
rainfalls in the Andhra Pradesh during 2006–2010 were 
employed as the data set. The experimental results demonstrate 
that SVR–PSO outperforms the SVR models based on the 
normalized mean square error (NMSE) and mean absolute 
percentage error (MAPE).  
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1. INTRODUCTION 
Weather forecasting is the application of science and 
technology to predict the state of the atmosphere for a future 
time and a given location. Traditionally, the mode of 
“assumption–simulation–forecast” was used in rainfall 
forecasting, which is a confirmable data analysis with 
multiple regression analysis, time series analysis, and 
exponential smoothing analysis and so on. The global nature 
of this phenomenon is very complicated and requires 
sophisticated computer modeling and simulation to predict 
accurately, for example, while some regions of the world are 
noticing a systematic decrease in annual rainfall, other notice 
increases in flooding and severe storms. Artificial Neural 
Network (ANN), has  been  widely  accepted  as  one  of  an 
alternative approaches for developing rainfall forecasting 
model. The success of the ANN models is attributable to its 
generalization capability to predict the output of new data 
after the neural network is trained [1], [2]. Some of these 
studies, however, showed that ANN had some limitations in 
learning the patterns because the generalization of single 
neural network is not unique. In the practical application, 
ANN often exhibits inconsistent and unpredictable 
performance on noisy data.  
Recently, support vector machine (SVM), a novel neural 
network algorithm, was developed by Vapnik and his 
colleagues, which is a learning  
machine based on statistical learning theory, and which 
adheres to the principle of structural risk minimization 
seeking to minimize an upper bound of the generalization 
error, rather than minimize the training error (the principle 
followed by ANNs). Originally, SVM has been presented to 
solve pattern recognition problems. However, with the 
introduction of Vapnik’s ε-insensitive loss function, SVM has 

been developed to solve nonlinear regression estimation 
problems, such as new techniques known as support vector 
regression (SVR) [8], which have been shown to exhibit 
excellent performance. 
At present, SVR has been emerging as an alternative and 
powerful technique to solve the nonlinear regression problem. 
When using SVR, the main problems is confronted: how to 
choose the optimal input feature subset for the SVR, and how 
to set the best kernel parameters. The proper parameters 
setting can improve the SVR regression accuracy. 
Inappropriate parameters in SVR lead to over-fitting or 
under–fitting. Different parameter settings can cause 
significant differences in performance. Therefore, selecting 
optimal hyper-parameter is an important step in SVR design. 
In this paper, a novel method is presented for rainfall 
forecasting model in terms of SVR technique based on 
particle swarm optimization and projection pursuit 
technology (SVR–PSO–PP), which use Projection Pursuit 
Technology based on Particle Swarm Optimization (PP–PSO) 
for feature selection of SVR, and then the PSO algorithm is 
used to evolve and design the parameters of SVR (SVR-
PSO). The rainfall data of Andhra Pradesh is predicted as a 
case study for development of rainfall forecasting model. The 
rest of this study is organized as follows. Section 2 describes 
the PP–PSO to extract the feature of input factors for SVR. 
Section3 elaborates the SVR–PSO model presented in this 
paper. For further illustration, this work employs the method 
setup a prediction model for rainfall forecasting in Section 4. 
Finally, some concluding remarks are drawn in Section 5.  
 

2. FEATURE EXTRACTION 
If the SVR is adopted without considering feature selection, 
then the dimension of the input space will be large and non-
clean, which degrading the performance of the SVR. If an 
efficient and robust feature selection method is chosen then it 
eliminates noisy, and   irrelevant and redundant data, but 
while maintaining the discriminating power of the data, then 
it becomes critical. In such a complex rainfall system, the 
feature extraction from the original data is very important as 
inputs to the regression in the SVR. 
In the late 1970s, the international statistical society has 
developed a class of new statistical method to deal with and 
analysis high-dimensional data, which is called Projection 
Pursuit (PP) [11]. We use the PP technology based on PSO to 
select input feature for SVR. This method adopted 
Exploratory Data Analysis (EDA) in a new way as “scanning 
data simulation forecasting”, which is suitable for dealing 
with non-linear, non-normal distribution data to avoid 
”dimension disaster”.  The basic idea of the method lies in: 
that the computer technology is used to project high-
dimensional data into the low dimensional sub-space through 
some combination, and to and out the projection by 
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minimizing the indicators, which can extract the original data 
structure or characteristics, so as to achieve the goal of the 
study and analysis of high dimensional data. 
2.1 Particle Swarm Optimization: 
Particle Swarm Optimization (PSO) is a technique used to 
explore the search space of a given problem to find the 
settings or parameters required to maximize a particular 
objective. This technique, first described by James Kennedy 
and Russell C. Eberhart in 1995, and works by maintaining a 
swarm of particles that move around in the search-space 
influenced by the improvements discovered by the other 
particles.  In PSO algorithm it has individual best position 
pbest (t) and the global best position gbest (t).  
 Each particle keeps track of its coordinates in the solution 

space which are associated with the best solution (fitness) 
that has achieved so far by that particle. This value is called 
personal best, pbest.  

 Another best value that is tracked (specialized If a moving 
part of a recording machine tracks, it gets into the correct 
position for operating) by the PSO is the best value 
obtained so far by any particle in the neighborhood of that 
particle. This value is called gbest.  

After calculating fitness and if the condition fails as shown in 
flow chart then all particles are evaluated and then particle 
position and velocity are updated. The velocity and position 
update step is responsible for the optimization ability of the 
PSO algorithm.  

 
Figure1: Flowchart of particle swarm optimization algorithm 
(PSO) 

A new velocity value for each particle or the velocity of each 
particle in the swarm is calculated using the following 
equation:  

  [1] 
Thus,    is the velocity of particle i at time t and   

is the position of particle i at time t. The parameters 

, , and  are called user supplied coefficients. The values  

 and   are random values regenerated for each velocity 

update. The value   is the individual best candidate 

solution for particle i at time t, and g (t) is the swarm’s global 
best candidate solution at time t. 
Once the velocity for each particle is calculated, each 
particle’s position is updated by applying the new velocity to 
the particle’s previous position: 
                   [2] 

After all particles being updated and if stopping criteria 
satisfies then we can get the optimal solution gbest.  
 

3.  EVOLUTION AND DESIGN THE PARAMETERS OF SVR 
SVR has newly emerged as an alternative and well effective 
means of solving the nonlinear regression problem. SVR has 
been rather successful in both academic and industrial 
platforms due to its many attractive features and shows 
potential generality performance. There are three significant 
features; the first thing is it can model nonlinear relationships. 
Secondly, the SVR training process is equivalent towards 
solving linearly constrained quadratic programming problems 
and the SVR surrounded resolution meaning is unique, 
optimal and suspect to generate local minima. Finally, it 
chooses only the essential data points to solve the regression 
function, which results in the sparseness of solution [13], 
[14], [15]. 
3.1 Support Vector Regression 
Assume we are given training data 

, where    is the input vector;   is the 

output value and n is the total number of data dimension. The 
modeling aim is to identify a regression function, y = f(x), 
that accurately predicts the outputs   corresponding to a 

new set of input–output examples, . The linear 

regression function (in the feature space) is described as 
follows: 
          
             F(x) = ω Φ (x) + b, 

                                        [3] 
where ω and b are coefficients; Ф(x) denotes the high 
dimensional feature space, which is nonlinearly mapped from 
the input space x. Therefore, the linear regression in the high-
dimensional feature space responds to nonlinear regression in 
the low-dimension input space, disregarding the inner product 
calculation between ω and Ф(x) in the high dimensional 
feature space. The coefficients ω and b can thus be estimated 
by minimizing the primitive problem of SVR as follows:  
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MinR ( )  =  ( ) -    

( -  

s.t.    

0                              [4] 
Where  and  are the Lagrangian multipliers associated 

with the constraints, the term    is defined as 

kernel function, where the value of kernel function equals the 
inner product of two vectors  and  in the feature space φ 

( ) and φ( ), meaning that   = φ( ) × φ( ). 

The typical examples of kernel function are the polynominal 
kernel and the Gaussian kernel. In this paper, the Gaussian 
kernel function is selected for SVR model as follows: 

           [5] 
3.2 SVR Parameters 
Different parameter settings can cause significant differences 
in performance [15, 16]. An extremely large value for 
parameters in SVR show the way to over-fitting, otherwise a 
suspiciously small value leads to under-fitting. Therefore, 
selecting the most favorable hyper-parameter is an important 
step in the SVR design. 
The parameters consist of: 
(1) Regularization parameter C: C determines the tradeoff 
cost between minimizing the training error and minimizing 
the models complexity. 
(2) Bandwidth of the kernel function ( ):  represents the 
variance of the Gaussian kernel function. 
(3) The tube size of e-insensitive loss function (ε): It is 
equivalent to the approximation accuracy placed on the 
training data points.  
SVR generalization performance (estimation accuracy) and 
efficiency depends on the hyper-parameters (C, ε and kernel 
parameters  ), being set correctly. 
 
3.3 Apply PSO to SVR Parameters 
In this paper, rainfall data is randomly divided into three 
subsets of approximately equal size, such as training data set, 
validation data and test data. Generally, most of the 
researchers still follow the trial and error procedure in order 
to select the parameters of SVR, first building a few SVR 
models based on different parameter sets, and then test them 
on a validation set to obtain optimal parameters. However, 
this procedure is time consuming. If it is not carefully used, 
then there is a possibility for irrelevant information (noises) 
in the system (over-fitting). This paper presents a new 
method SVR–PSO, which optimizes all SVR’s parameters 
simultaneously.  
The performance of the parameter set is measured by the 
RMSE (root mean square error) on the training subset and 
validation data. Averaging the RMSE over the training data 
(or validation data) can be computed as: 

                 [6]                         
where n is the number of training data samples;  is the 

actual value and f ( ) is the predicted value. The fitness is 

defined as follows: 

                              [7] 
where R1 is the RMSE over the training data and R2 is the 
RMSE over the validation data. First, the population of 
particles is initialized and each particle is represented as (τ1, 
τ2, τ3), where τ1, τ2 and τ3 denote the regularization 
parameters C,  and ε, respectively. The initial group is 
randomly generated, where each group having a random 
position and a random velocity for each dimension. Second, 
each particles fitness for the SVM is evaluated. The each 
particles fitness in this study is the regression accuracy. If the 
fitness is better than the particle’s best fitness, then the 
position vector is saved for the particle. If the particle’s 
fitness is better than the global best fitness, then the position 
vector is saved for the global best. Finally the particle’s 
velocity and position are updated until the termination 
condition is figure2. 

 
Figure2: A Flow Diagram of the Proposed SVR-PSO   Model 
 
 

4.  MODELING FOR RAINFALL FORECASTING 
The platform adopted to develop the PP-PSO approach and 
the SVR–PSO approach is a PC with the following features: 
Intel Celeron M 1.86 GHz CPU, 1.5 GB RAM, a Windows 
XP operating system and the Visual C++ 6.0 development 
environment. Table 1 gives overview of PSO parameter 
settings. 
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      Table1. PSO parameter settings 
Iteration times                                            100 
Population size                                            60 
The minimum inertia weight                      0.1 
The maximum inertia weight                     0.9 
The minimum velocity                               0.1 
The maximum velocity                               0.9 
Learning rate                                               2.0 
 
4.1 The Presentation Assessment  
The experimental results demonstrate that SVR–PSO 
outperforms the SVR models based on the errors. In order to 
compute the efficiency of the proposed method, we compare 
the results of SVR-PSO model. Four types of errors are 
presented such as,  
 
Normalized Mean Squared Error (NMSE): 

                             [8]                                                         
Pearson Relative Coefficient (PRC): 

      [9] 
Root Mean Squares Error (RMSE): 

                         [10]                                                  
and Mean Absolute Error (MAE) which have been found in 
many papers, are also used here, Interested readers can 
referred to [16] for more details. 
 
The Error Value more than 25mm: 
 

                                             [11]      Where     
  =1,         | | > 15                                                                                                    

       0,         | | ≤ 15 

 
The Error Value less than 5mm 
 

                                             [12] Where  
 =1,           | | < 5 

      0,          | | ≤ 5. 

  
  is original value,    is forecast value.  

The original rainfall data is used as the predicted variables. 
Thus, we can build a SVR-PSO prediction method. When all 
the training results satisfy the request of error, the new factor 

matrix and the parameters of SVR have been obtained well 
by the learning data. 
 

Related work: 

@relationrainfall3-DM.PREPROCESS.InterquartileRange-
Rfirst-last-O3.0-E6.0 

@attribute'date 
{6/28/2003,6/29/2003,6/30/2003,7/1/2003,7/2/2003,7/3/2003,
7/4/2003,7/5/2003,7/6/2003,7/7/2003,7/8/2003,7/9/2003,7/10
/2003,7/11/2003,7/12/2003,7/13/2003,7/14/2003,7/15/2003,7/
16/03,1/9/2004,1/10/2004,1/11/2004,1/12/2004,1/13/2004,1/1
4/2004,1/15/2004,1/16/2004,1/17/2004,1/18/2004,1/19/2004,
1/20/2004,1/21/2004,1/22/2004,1/23/2004,1/24/2004,1/25/20
04,1/26/2004,1/27/2004,1/28/2004,1/29/2004,1/30/2004,1/31/
2004,2/1/2004,2/2/2004,2/3/2004,2/4/2004,2/5/2004,2/6/2004
,2/7/2004,2/8/2004} 

@attribute 'Rain fall' numeric 

@attribute sunshine numeric 

@attribute Dewpoint numeric 

@attribute Humidity numeric 

@attribute pressure numeric 

@attribute'wind  speed' 
{5.45102,4.189796,3.585714,4.942857,0.863265,2.57551,2.8
81632653,2.12244898,4.443969,6.379591837,0.371428571,2
.144897959,8.816326531,6.363265306,5.589795918,4.38163
2653,5.073469388,3.555102041,3.879591837,6.132653061,4
.044897959,5.126530612,5.642857143,1.783673469,4.81836
7347,5.185714286,6.010204082,12.75510204,11.53265306,9
.869387755,4.065306122,2.589795918,5.22244898,8.483673
469,2.320408163,2.732653061,3.132653061,1.734693878,0.
66122449} 

@attribute 'Max temp' numeric 

@attribute 'Min temp' numeric 

@attribute Outlier {no,yes} 

@attribute ExtremeValue {no,yes} 

@data 

1/1/2003,19.3,0,6.6571,95.6122,992.1632,5.45102,10.9,2.4,n
o,yes 

1/2/2003,14.8,0,6.5326,93.3061,982.6734,4.189796,10,5.2,no
,yes 

1/3/2003,0.9,0,2.553,95.8367,995.3469,3.585714,6,-
0.4,no,no 

1/4/2003,0,4.3,-0.9959,89.3061,1011.2857,4.942857,2.8,-
0.8,no,no 

1/5/2003,0,2.8,0.2,89.653,1013.7551,0.863265,3.2,-1.6,no,no 

1/6/2003,0,4.3,-2.0469,84.4285,1017.1428,2.57551,2.4,-
1.2,no,no 

1/7/2003,0,1.3,-4.6653,82.6938,1018.6938,2.881632653,0,-
4,no,no 

1/8/2003,0,0,-2.1061,92.9387,1016.1428,2.12244898,0.4,-
4,no,no 
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INFORMATION GAIN ATTRIBUTE SELECTION 
RESULT 

 
5. CONCLUSIONS 

           The rainfall system is one of the most active dynamic 
weather systems, and its interaction is also the most complex. 
And because it is influenced by many changeable factors, it is 
very difficult to predict the results. By using PSO algorithms 
evolve and design the parameters (C, ε and kernel parameter 
σ2) of SVR, and the actual rainfall is predicted. This paper 
present that PSO is applied to evolve and design the 
parameters (C, ε and kernel parameter σ2) of SVR, the 
experimental results indicate that the SVR–PSO-PP model is 
superior to the BP–NN model for the training samples and 
testing samples of rainfall forecasting in terms of different 
measurement. From the experiments presented in this paper 
we can draw the following conclusions that the SVR–PSO 
model can be used as an alternative tool for rainfall 
forecasting to obtain greater forecasting accuracy and 
improve the prediction quality further in view of empirical 
results. 
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